Very Long Baseline Neutrino Oscillations

Milind Diwan
Brookhaven national Laboratory
Annual DOE program review, April 2005

3 Generation oscillations

Difference in mass squares: $(m_2^2 - m_1^2)$

2-nu:
$$P(\nu_a \to \nu_b) = \sin^2 2\theta \sin^2 \frac{1.27((m_2^2 - m_1^2)/eV^2)(L/km)}{(E/GeV)}$$

$$P(\nu_a \rightarrow \nu_b) = \sum_i |U_{ai}|^2 |U_{bi}|^2$$

no matter effects

Oscillation nodes at $\pi/2, 3\pi/2, 5\pi/2, ... (\pi/2)$: $\Delta m^2 = 0.0025 eV^2, E = 1 GeV, L = 494 km$.

Neutrino Oscillations Results

$$\Delta m_{21}^2 = (8.0 \pm 0.3) 10^{-5} eV^2$$
$$\sin^2 2\theta_{12} = 0.86 \pm 0.04$$

$$\left| \Delta m_{32}^2 \right| = (2.5 \pm 0.3) 10^{-3} eV^2$$
 sign?
 $\sin^2 2\theta_{23} = 1.02 \pm 0.04$ degeneracy?

$$\sin^2 2\theta_{13} < 0.12$$
 (99% C.L.) $\delta_{CP} = ???$

Values from: A. Strumia & F Vissani hep-ph/0503246 - ifup-th/2005-06

Next Generation Experiments

- ightharpoonup increase sensitivity $\sin^2 2\theta_{13} \& \delta_{\rm CP}$ significantly
- > precision measurements of Δm_{32}^2 & $\sin^2 2\theta_{23}$
- > resolve mass hierarchy (sign of Δm_{32}^2)
- sensitive to new physics

To go to the heart of the 3 generation picture must have experiment with L/E that includes effects from both mass differences.

- 28 GeV protons. I MW beam power. Horn focussed
- 500 kT water Cherenkov detector.
- baseline > 2500 km. WIPP, Henderson, Homestake

Working group chronology

- December, 2001: Tom Kirk gave us a charge to form a working group.
- ~50 Members from Physics department, CAD, and outside universities.
 - Coordinators: W. Marciano (physics),
 M.Diwan(simulations), W. Weng(accelerator upgrade)
- BNL HENP PAC (2002)
- Internal AGS review (June 2004)
- HEPAP facilities plan(2003), Absolutely central.
- APS neutrino study (2004)
- NESS workshop(Sep 2002), DUSEL S1 and S2 workshops,
 3 BNL/UCLA workshops(Dec 2003, May 2004, Feb 2005)

Working group written material

- W. J. Marciano, "Long baseline neutrino oscillations and leptonic CP violation," Nucl. Phys. Proc. Suppl. 138, 370 (2005).
- M. V. Diwan, "The case for a super neutrino beam," Heavy Quarks and Leptons Workshop 2004, San Juan, Puerto Rico, 1-5 Jun 2004. arXiv:hep-ex/0407047.
- J. Alessi, et al., "The AGS-based Super Neutrino Beam Facility, Conceptual Design Report," BNL-73210-2004-IR, 1 Oct. 2004.
- W. T. Weng et al., J. Phys. G 29, 1735 (2003).
- W. J. Marciano, "Extra long baseline neutrino oscillations and CP violation," BNL-HET-01-31, Aug 2001. 11pp. arXiv:hep-ph/0108181.
- M. V. Diwan et al., "Very long baseline neutrino oscillation experiments for precise measurements of mixing parameters and CP violating effects," Phys. Rev. D 68, 012002 (2003) [arXiv:hep-ph/0303081].

R, May 2003. 114pp.

)02. 100pp.

ılar multi-purpose neutrino

detector for a program of physics in the Homestake DUSEL," arXiv:hep-ex/0306053.

We are after the science and facilities absolutely central to the US HEP program: Neutrino super beam and a large capable underground detector.

AGS Conceptual Design Report

BNL-73210-3004-IR

The AGS-Based Super Neutrino Beam Facility Conceptual Design Report

8 October 2004

October 8, 2004

BNL-73210-2004-IR

The AGS-Based Super Neutrino Beam Facility

Conceptual Design Report

Editors: W. T. Weng, M. Diwan, and D. Raparia

Sent to DOE Oct 2004

Contributors and Participants

Alessi, D. Barton, D. Beavis, S. Bellavia, I. Ben-Zvi, J. Brennan, M. Diwan, P. K. Feng, J. Gallardo, D. Gassner, R. Hahn, D. Hseuh, S.Kahn, H. Kirk, Y. Y. Lee, E. Lessard, D. Lowenstein, H. Ludewig, K. Mirabella, W. Marciano, I. Marneris, T. Nehring, C. Pearson, A. Pendzick, P. Pile, D. Raparia, T. Roser, A. Ruggiero, N. P. Samios, N. Simos, J. Sandberg, N. Tsoupas, J. Tuozzolo, B. Viren, J. Beebe-Wang, J. Wei, W. T. Weng, N. Williams, P. Yamin, K. C. Wu, A. Zaltsman, S. Y. Zhang, Wu Zhang

BNL-73210-2004-IR

Brookhaven National Laboratory Upton, NY 11973 October 8, 2004

http://raparia.sns.bnl.gov/nwg_ad/agsnbcdr1.pdf

Why Very Long Baseline?

observe multiple nodes in oscillation pattern

less dependent on flux normalization

neutrino travels larger distance through earth

larger matter effects

Why Broadband Beam?

observe multiple nodes

larger energies
Iarger cross sections

Sensitive to different parameters in different energy regions:

AGS 1MW proton beam

Upgrade AGS (28 GeV protons)

intensity: 7.10¹³ → 9.10¹³ ppp

rep. rate: 0.5Hz → 2.5Hz

- ramp time: 0.5s → 0.2s
 repl. power supply, rf, ...
- 2) filling time: 0.6s → 1ms replace booster: exist. warm linac 200 MeV new SC linac 1 GeV

cost estimate: \$273M (excl. contingency)

takes 6 years to complete

Two Injection Schemes

	AGS present	AGS upgrade		
Kin. Energy	28 GeV	28 GeV		
Rep. Rate	1 / 3 Hz	2.5 Hz		
Protons/ Cycle	0.67 x 10 ¹⁴	0.89 x 10 ¹⁴		
Ave. Power	0.10 MW	1.0 MW		

Typical DTL cycle for Protons

6

1 x 720 μs @ 30 mA

Status of technical progress on AGS

AGS Upgrade with CCL & SCL

- Add CCL from 116 MeV to 400 MeV
- SCL from 400 MeV to 1.5 GeV at 25 MeV/m gradient
- One type of cavity, cryomodule, and klystron, similar to SNS.
- New design for LINAC could bring us to 1.5 MW
- Experimental work on carbon-carbon target irradiation yielding results.

disappearance

neutrino running:

1MW beam 0.5Mt water Cerenkov det. 2540km distance 5e7s running time

determine Δm_{32}^2 $\& \sin^2 2\theta_{23} \text{ to } 1\%$ systematics dominated

anti-neutrino running:

same as ν but with 2MW beam

including anti-v running:

- CPT test possibleerrors below 1% achievable

v_e Appearance

backgrounds:

- beam $v_{\rm e}$
- NC V

neutrino running:

measure $\sin^2 2\theta_{13}$ and δ_{CP} for $\sin^2 2\theta_{13} > 0.01$ resolve mass hierarchy

include anti-neutrino run:

exclude $\sin^2 2\theta_{13} > 0.003$

if $\sin^2 2\theta_{13}$ too small $\rightarrow \delta_{CP}$ measurement not possible observation ν_{α} appearance possible through solar term

Status of physics work

- Have examined physics reach with antineutrino running.
- Have examined more detailed issues regarding baseline. Optimization based on physics judgement. But longer baseline => better science.

M. Diwan, Proc. Heavy Quarks and Leptons, hep-ex/0407047

 GREAT PROGRESS ON DETECTOR BACKGROUNDS!

CP resolution

More than 10 sigma resolution of mass hierarchy after anti-neutrino running and excellent resolution on delta-CP.

Detector

- 500 kT fiducial mass for both proton decay and neutrino astro-physics and neutrino beam physics.
- ~10% energy resolution on quasielastic events.
- muon/electron separation at <1%
 - 1,2,3 track event separation.
 - Showering NC event rejection at factor of ~20.
- Low threshold (~5 MeV) for solar and supernova physics.
- Time resolution ~few ns for pattern recognition and background rejection.

Complete water Cherenkov detector simulations progress

 ν_{e} CC for signal ; all $\nu_{\mu,\tau,e}$ NC , ν_{e} beam for background

C. Yanagisawa (Stony Brook), 3rd BNL/UCLA workshop http://www.physics.ucla.edu/hep/proton/proton2005.htm

No magic. Performance is obtained by giving up large fraction of S/B potential signal CC events; and using the kinematics of NC events.

Summary of BNL superbeam@UNO

CP phase	Signal	Bkg	Effic	Signal	Bkg	Beam ν_e
0°	ν _e CC	ν_{μ} all, ν_{e} NC	40%	178	75	43
-135°	$\nu_{_{e}}$ CC	$ u_{\mu}$ all, $ u_{e}$ NC	40%	233	78	44
+135°	ν _e CC	ν_{μ} all, ν_{e} NC	40%	342	81	45
-45°	ν _e CC	ν_{μ} all, ν_{e} NC	40%	142	75	43
+45°	$\nu_{_{e}}CC$	ν_{μ} all, ν_{e} NC	100%	700	1878	127
			50%	321	112	57
with trac	litional	water Chrenkov cuts	40%	251	74	44

Chiaki Yanagisawa

Scientific Reach of Future Neutrino Oscillations Exps.

Parameter	T2K	T2HK	Reactor	Nova	Nova2	VLBNO .
Δm_{32}^{2}	\checkmark	\checkmark	-	\checkmark	\checkmark	\checkmark
$\sin^2(2\theta_{23})$	\checkmark	\checkmark	-	\checkmark	\checkmark	\checkmark
$\sin^2(2\theta_{13})^a$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$\Delta m_{21}^{2} \sin(2\theta_{12})^{b}$	-	-	-	_	-	12%
sign of $(\Delta m_{32}^2)^c$	Nova	_	<u>-</u>	T2K	T2K	yes
measure $\delta_{CP}^{}d}$	-	:Nova	_Combi	ned _	T2HK	±13°
N-decay improv.	x 1	x20	measure	emen <u>t</u>		x10
Detector (KTons)	50	1000	20	30	30	400
Beam Power (MW)	0.74	4.0	14000	0.65	2.0	1.5
Baseline (km)	295 e	295 e	1	810 e	810 ^e	>2500
Detector Cost (\$M)	exists	~\$\$\$	20	165	+ ???	\$\$
Beam Cost (\$M)	exists	\$\$	exists	\$	\$\$\$	400

 $[^]a$ detection of $\nu_{\mu} \rightarrow \nu_e$, upper limit on or determination of $sin^2(2\theta_{13})$

^e beam is 'off-axis' from 0-degree target direction

^b detection of $v_{\mu} \rightarrow v_{e}$ appearance, even if $\sin^{2}(2\theta_{13}) = 0$; determine θ_{23} angle ambiguity

 $^{^{\}text{c}}$ detection of the matter enhancement effect over the entire δ_{CP} angle range

 $^{^{\}rm d}$ measure the CP-violation phase $\delta_{\rm CP}$ in the lepton sector; Nova2 depends on T2HK

Comments on Neutrino Oscillations Experiments

- All parameters of neutrino oscillation can be measured in <u>one</u> experiment
 - a Very Long Baseline Neutrino Oscillation (VLBNO) at >2000 km
 - the cost of VLBNO is comparable to (or less than) competing proposals
- the mass of the VLBNO target enables a powerful Nucleon Decay search
- Use of a broadband neutrino beam at very long distances is the key
- Focus on CP because The CP-violation parameter is the most difficult parameter to determine
 - matter effects interact with CP-violation effects
 - the CP-violation phase δ_{CP} has distinct effects over the full 360° range
- Off-axis beam method requires multiple distances and detectors
 - all experiments will require of order 10 Snomass years of running
- All measured oscillation parameters will be limited to ~1% precision by systematic errors except sin²(2θ₂₃)

Wanted

- Resources to lower costs of the AGS upgrade and super neutrino beam.
- Must push I MW target studies to completion.
- Resources to push water Cherenkov simulations as well as start detector R&D.
- University groups need to consider this part of the their future.

Conclusions

- Powerful new method for neutrino CP violation study. Absolutely central part of the HEP facilities plan and the APS neutrino study plan.
- We have made great progress on many technical issues.
- Important work performed on detector background issue.
- Need patience, encouragement, and resources to make a proposal.
- EXPECT A DETECTOR R&D PROPOSAL SOON.